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Hymer, W. C., R. E. Grindeland, T. Salada, P. Nye, E. J.
Grossman, and P. K. Lane. Experimental modification of
rat pituitary growth hormone cell function dm'ing and after
spaceflight. J. Appl. Physiol. 80(3): 955-970, 1996.--Space-
flown rats show a number of flight-induced changes in the
structure and function of pituitary growth hormone (GH}
cells after in vitro postflight testing (W. C. Hymer, R. E.
Grindeland, I. Krasnov, I. Victorov, K. Motter, P. Mukherjee,
K. Shellenberger, and M. Vasques. J. Appl. Physiol. 73,
Suppl.: 151S-157S, 1992}. To evaluate the possible effects of
microgravity on growth hormone (GH) cells themselves,
freshly dispersed rat anterior pituitary gland cells were
seeded into vials containing serum _+ 1 pM hydrocortisone
(HC) before flight. Five different cell preparations were used:
the entire mixed-cell population of various hormone-produc-
ing cell types, cells of density < 1.071 g/cm a (band 1 ), cells of
density > 1.071 g/cm a Iband 2), and cells prepared from
either the dorsal or ventral part of the gland. Relative to
ground control samples, bioactive GH released from dense
cells during flight was reduced in HC-free medium but was
increased in HC-containing medium. Band 1 and mixed cells
usually showed opposite HC-dependent responses. Release of
bioactive GH from ventral flight cells was lower; postflight
responses to GH-releasing hormone challenge were reduced,
and the cytoplasmic area occupied by GH in the dense cells
was greater. Collectively, the data show that the chemistry
and cellular makeup of the culture system modifies the
response of GH cells to microgravity. As such, these cells offer
a system to identify gravisensing mechanisms in secretory
cells in future microgravity research.

microgravity; cell culture; cell gravisensing; growth hormone
assays

IF AND HOW CELLS SENSE the low gravity of spaceflight
has been thoughtfully considered, modeled, and de-
bated for years. Many different types of cells have been

exposed to microgravity (14); some show significant and
repeatable changes (4-6, 19, 24). Although this area of
investigation is only beginning, many believe that

these kinds of studies will 1) eventually help to define
the mechanisms that cells and organisms use to re-

spond to this unique environment and 2) help to
explain the well-documented changes in the musculo-
skeletal, immune, vascular, and endocrine systems of
spacefiown animals and astronauts (11, 12). We studied
growth hormone (GH) cell structure and function in

three previous spaceflight experiments because pitu-

itary GH participates in the regulation of these organ
systems. We found that significant changes had oc-
cuffed in the GH and prolactin (PRL) cells prepared
from animals in microgravity for 7-14 days; interest-

ingly, many of these changes persisted for 2 wk post-
flight ( 15, 16).

This report describes changes in rat GH cells them-
selves during and after an 8-day spaceflight with a
passive cell culture system. The most important changes
found were those relating to 1 ) the amount and biologi-
cal activity of GH released from cells in vitro, 2) the
responsiveness of the GH cells to hydrocortisone (HC)
and hypothalamic GH-releasing hormone (GHRH), 31
the cytoarchitecture of GH cells, and 4) their intracellu-

lar hormone content. Evidence for recovery of some, but
not all, of these changes during a 6-day postflight test
period was obtained. Finally, the data show the influ-

ence of paracrine interactions between the heteroge-
neous cell types on cell function as they experience low
gravity.

A companion report describes changes in PRL cells
that also occurred during this same experiment (18).

MATERIALS AND METHODS

Animals and Tissue Processing Before Flight

Animal care and use for this experiment, which was flown
on the Space Shuttle in 1992 (STS 46), were approved by
Institutional Animal Care and Use Committees at both The
Pennsylvania State University and the National Aeronautics
and Space Administration (NASAl Ames Research Center
and conformed to National Institutes of Health guidelines.
Nineteen hours before launch, 100 specific pathogen-free
Sprague-Dawley male rats (200-220 g; Harlan Sprague
Dawley, Frederick, MD) were killed by decapitation and their
entire anterior pituitary glands or the dorsal and ventral
regions were dissociated into single-cell suspensions with a
trypsinization technique that routinely yields 2-2.5 × 10_
cells from each gland (17).

Cells 12.0 × 10_ in 200 _1) from one of five different
experimental groups {Fig. 1) were added to a 4.4-ml capacity
borosilicate glass vial (Wheaton_ containing 4.0 ml of culture
medium [either modified Eagle's minimal essential medium
(_MEM) containing 5_ calf serum, 0.2% NaHCO:_, 25 mM
N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)
buffer (pH 7.4), and antibiotics; or _MEM containing insulin,
transferrin, and selenium (Collaborative Biomedical) buff-
ered with 25 mM HEPES (pH 7.4) and antibiotics)} 128, 33).
Some of these media were supplemented with 1 I_M HC. The
cell groups included 1) the entire population of different
hormone-producing cell types (mixed), 21 separated cells of
low density [1.040-1.071 g/cma; (band 1 )], 31 separated cells
of high density [1.071-1.085 g/cm37, (band 2)], 4) mixed cells
prepared from the dorsal part of the gland, and 5) mixed cells
from the ventral part of the gland. A dorsal and ventral
section from each gland was made with a Smith-Farquhar
tissue chopper. Each gland was positioned on the stage of the
device so that a single slice would reproducibly yield two
sections of _6,000 _m each. The method used to separate GH
cells into two subpopulations involved layering 107 dispersed

955



956 GROWTH HORMONE AND SPACEFLIGHT

85 pituitary
glands

cells

mixed s_

i light heavy
cells cells

4, 4,
vials vials vials

dorsal section

cells

¥

vials

15 pituitary

ventral section

cells

vials

S
flight ground

(8 days) (8 djays)

post flight processing

released GH

GHRH testing
intracellular GH

morphology

ground
(19 hours)

I process at launch

released GH
intracellular GH

Fig. 1. Experimental design. GH, growth hormone; GHRH, GH-
releasing hormone. See MATERIALSANDMETHODSfor details.

cells (1 ml) over discontinuous density gradients of bovine

serum albumin (29). Layer 1 had a density of 1.071 g/cm _,

whereas layer 2 had a density of 1.085 g/cm 3. After cen-

trifugation (2,000 rpm for 30 min at 4°C), cells were col-
lected from the two layering interfaces. Those of dens-

ities < 1.071 g/cm 3 (band 1) have GH cells with relatively few

cytoplasmic GH-containing 0.3-_am secretory granules,
whereas those of densities > 1.071 g/cm 3 (band 2) are laden

with these particles (29). The average recovery of cells from

the gradient was 86% in = 7 preflight trials), and the GH cell

percentages [determined by flow cytometry (15)] in nine trials
were 23 _+ 3 and 52 _+ 4% for band I and band 2 cells,

respectively. Other preliminary data indicated that band 2

GH cells contained 100 pg GH/cell, whereas band 1 cells
contained about one-half of that amount. The earlier report of

Snyder et al. (29) showed that the addition of 1 _M HC to

serum-containing medium markedly increased the intracellu-

lar GH of cultured pituitary cells but had relatively little

effect on hormone release; preliminary experiments with 1

_M HC in the closed-vial system confirmed this result.
There were six sealed cell-containing vials for each of the

five experimental groups; the total number of vials exposed to
microgravity was 165. Three identical sets of 165 cell-

containing vials were kept at 37°C between the time of

preparation (launch minus 19 h) until 12 h before landing

when they were required to be kept at 22°C. One of the 165

vial sets served as the synchronous ground control; it was

kept in the laboratory at the Kennedy Space Center (FL)
under conditions identical to those in space during the 8-day

flight. The other vial set was processed at launch to determine
how much GH was released from the cells into the medium

during the 19 h between the end of cell preparation and the
launch.

Postflight Cell Culture and GHRH Testing

Postflight processing began after transport to the testing

facility (7 h). Some of the cell-containing vials (n = 3

vials/flight and 3 vials/ground) were replaced with fresh

media, and postflight culture continued in the same sealed

vials for an additional 6 days with an intervening medium

change on day 3. Cells in other vials from mixed, band 1, and

band 2 flight and ground groups (only those in serum-

containing medium without HC) were tested for their respon-

siveness to a synthetic hypothalamic GHRH (2 × 10 _ M;

Peninsula Laboratories). This testing was done by 13 succes-

sive additions and replacements of fresh medium (1 ml of
uMEM + 5% calf serum each time) to each cell-containing

vial (n = 3 vials/treatment group) at 15-min intervals. Only
the fourth and ninth medium changes contained either 2 ×

10 -9 M GHRH prepared in phosphate-buffered saline (1 pl) or
vehicle alone.

GH Assays

Concentrations ofimmunoreactive GH (iGH) released from

the cells into the culture media were determined by an

enzyme immunoassay (8). The polyclonal antiserum to GH

has a cross-reactivity of <0.3% to PRL at the final dilution

(1:80,000) used in the assay; each sample was analyzed in

duplicate at two dilutions, and the results are expressed
relative to a rat GH standard preparation (B-11) kindly

provided by the National Institute of Diabetes and Digestive

and Kidney Diseases (Bethesda, MD) and the National

Hormone and Pituitary Program (University of Maryland
School of Medicine, Baltimore). Intracellular GH was ex-

tracted from the cells by overnight incubation in 0.01 N

NaHCO3 (4°C), followed by centrifugation (1,000g for 30 min)

to remove particulate material. Under these conditions, the
supernatant fraction contains >90% of the extractable GH

(9).

Concentrations of biologically active GH (bGH) in the
culture media and extracts were determined exactly accord-

ing to the tibial-line bioassay procedure of Greenspan et al.

(10). Approximately 2,000 hypophysectomized female rats, 26

days old at surgery, were used to assay samples with a

four-point assay procedure (i.e., four rats/dose at two doses).

The assay's end point measures increases in tibial epiphyseal

plate widths after four daily injections of hormone; it has a
sensitivity of 1 _g and is specific for GH. Responses were

compared with a bovine GH standard (1.5 U/mg) calibrated
against a USP standard; they are expressed in terms of an

in-house preparation of rat GH (3.0 IU/mg).

High-Performance Liquid Chromatography (HPLC)

To compare apparent molecular weights of GH released

from cells in microgravity vs. unit gravity, 1-ml samples of

serum-containing media (÷ 1 _M HC) from the mixed, band 1,

and band 2 flight samples in = 3 samples/group) or their

corresponding ground control samples were lyophilized and
reconstituted in 500 _l of 0.1 M potassium phosphate buffer

containing 0.05 M NaC1, pH 7.8. Each sample was applied to

a sizing column of Protein-Pak 300 SW (7.8 mm × 300 mm;
Waters, Milford, MA) equilibrated with the same buffer. The

column flow rate was 0.3 ml/min, and 0.6-ml fractions were
collected. The column was calibrated with blue dextran (mol

wt 2,000,000), [3-amylase (mol wt 200,000), bovine serum

albumin (mol wt 66,000), carbonic anhydrase (mol wt 29,000),

and ribonuclease (mol wt 13,683).

Morphology

In some cases, cells were removed from the vials by

trypsinization (19) and prepared for immunocytochemistry or

flow cytometry. Immunocytochemistry was used to identify
GH cells in preparations that were attached to poly-a-lysine-

coated coverslips (15). Briefly, this involved fixation in Zambo-
ni's fluid followed by membrane permeabilization with 0.4%

Triton X-100, incubation in GH antiserum (1:10,000) for 36 h,
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incubationinhorseradishperoxidaseantiserum(1:500),and
stainingwith diaminobenzedine.Thesepreparationswere
usedfordigitalanalysisofthecytoplasmicareaoccupiedby
GH.Thisprocedureandequipmentwereidenticalto those
usedpreviously(16);it generatesa digitizedimageofthe
stainedcell,colorizedaccordingto intensitieswithin the
imagedevice's256graylevelstoquantitatetheareaofGH
staining.Asbefore,carewastakentomaintainconstantlight
settings,condenserheight,andaperturesizein additionto
normalizingvariationsin lightwitha lightmeterplacedat
the levelof the camera.In somecases,therewerealso
sufficientcellsto doflowcytometricanalysisofGH-stained
cellsin suspension(15).Cell fixationwasin phosphate-
bufferedsaline-azide-buffered4%Formalinfollowedbymem-
branepermeabilizationwith0.4%TritonX-100,incubationin
GHantiserum(1:10,000)overnight,incubationin fluorescein
isothiocyanate-conjugatedantiserum,counterstainingwith
propidiumiodide,andanalysisby flowcytometry(Epics
model753).Parametersevaluatedon30,000cells/sample
were1 ) GH cell percentage, 2) marker index (the ratio of the

voltages of stained to unstained cells; an index of the "bright-

ness" of fluorescence staining), 3) forward-angle light scatter

(FALS; an indicator of cell size), and 4) perpendicular light

scatter (PLS; an indicator of the content of cytoplasmic

hormone-containing secretory granules) (15). The application

of the flow cytometer to evaluate these parameters for rat

pituitary cells, as well as the experimental data that establish

their biological significance, has been documented (25).

Closed-Cell Culture System: Validation

Because it was not possible to do this experiment on the

Space Shuttle with conventional cell culture hardware, a

simple passive system was developed. Release of iGH from

cells in the closed-vial system over a 9-day period at 37°C was

linearly related (r 2 = 0.992) to cell number over the range of
103 to 8 x 10 s cells seeded (9 trials). The amount of iGH

synthesized by 2 x 10 s cells during the 9 days (i.e., the

amount recovered in media plus cells minus the amount

initially seeded) ranged between 15 and 20 1Jg. A majority of

synthesized GH was released into the culture medium. Net

GH synthesis in the closed-vial system was not significantly

different from that measured in primary rat pituitary cell

cultures that are routinely maintained on conventional plas-

ticware (Linbro tissue culture plates) that allows free gas

exchange (95c_ , air-5% CO2) (33). It was also not significantly
different from that measured in cells cultured on Linbro

plates that were sealed to prevent gas exchange (data not
shown).

Several formulations of culture media were tested to

determine optimal GH synthesis in the closed system; these

included Medium 199, aMEM, addition of 0.2% NaHCO3, and

calf or horse serum (either 5 or 10%). In addition, we

compared GH synthesis levels in cells cultured in rat serum
with those cultured in calf or horse serum. The rank order

was determined to be rat serum > calf serum > horse serum.

Cells in rat serum synthesized 2.3 _+ 0.4 times as much

hormone as those in calf serum (n = 14 experiments);

Fig. 2. Electron micrograph of a GH and prolactin cell maintained in a closed glass vial for 9 days at 37°C before
trypsinization and preparation for electron microscopy. Cell ultrastructure compares favorably with cells
maintained under more usual culture conditions. Magnification, x25,000.
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however, it was not selected for use in the flight experiment

because rat serum supplies were limiting. With 2 > 10 _ cells

in closed vials for 9 days, the pH is maintained within 0.1 unit

of its initial value (pH 7.4).

After 9 days, the cells showed a typical ultrastructure

including intact membranes around the secretion granules

(Fig. 2). Other data showed that 53 -+ 3% (n = 14 trials) of the

cells originally seeded could be recovered by trypsinization

after 9 days; the percentage of recovered GH cells (29 -+ 3%;

n = 11 experiments) compared favorably with input percent-

age, demonstrating that preferential loss of GH cells did not

occur during trypsinization. Amounts of GH released from

every 1,000 GH cells seeded during 9 days in culture was

336 _+ 9 ng (n = 15 experiments).

Mierogravity Cell Culture: Special Considerations

It was necessary to establish that the vibration forces

associated with the Shuttle launch and recovery would have

no deleterious effect on cell attachment, structure, or func-

tion. We found >97% of the cells seeded into the vial routinely

attached to the vial bottom within 18 h; furthermore, they

Table 1. Effect of microgravity on cell parameters measured by flow cytometry

GH Cells, q Total Cell Population GH Cell Population

After flight FALS PLS Marker index FALS PLS
Before

flight Flight Ground Flight Ground Flight Ground Flight Ground Flight Ground Flight Ground

Mixed 32 12 11 21 25 21 33 5.2 6.1 23 24 57 66

Band 1 22 9 11 27 30 29 37 4.4 3.9 20 23 34 49

Band 2 57 47 62 23 27 42 58 2.1 2.2 25 29 75 84

Values represent peak channels of size [forward-angle light scatter (FALS)] and cytoplasmic granularity [perpendicular light scatter (PLS)]

and ratio of voltages of stained to unstained cells (marker index)• Data were collected from 30,000 cells/sample. GH, growth hormone.
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remained attached after vibration tests were conducted at the

NASA Ames Research Center that were greater than those

typically experienced on the Shuttle. Furthermore, shaking

had no effect on subsequent release of iGH during a 9-day
culture test.

Because there was a 0.2-ml air bubble at the top of each vial

and because bubble behavior can be unpredictable in space,

we were concerned that it could become dislodged in flight,

come to rest directly over the cell layer, and result in cell

dehydration. To discourage this possibility, each vial was

rimmed internally (upper one-third) with a surface active

agent (Prosil 28, Thomas Scientific); furthermore, one time

each day, an astronaut rotated the vial container five times in

a period of 10 s.

We also conducted a trial aboard the KC-135 airplane to

study bubble behavior in the glass vial during the 20-30 s of

microgravity achieved in parabolic flight and verified that the

air bubble tended to remain in the upper one-third of the filled
vial.

Data Presentation

We determined that the amount of GH released during the

19 h before the Shuttle launch (Fig. 1) was <1% of the total

A B

C D

GH released over the entire 8-day culture period; these data
are therefore not included in RESULTS.

Approximately one-half of the cell culture vials used a

chemically defined serum-free medium that was supple-

mented with insulin, transferrin, and selenium. This formula-

tion was used to eliminate possible effects of unknown serum

factors on GH cells. In every case, the trends in GH release

between various treatment groups were identical to those

using serum-containing media except that the actual GH

levels were consistently lower. We have therefore chosen not

to present these results in this report.

Two automatic temperature recording devices, developed

at the NASA Ames Research Center, were secured in the

sealed vial containers to continuously monitor ambient tem-

perature around the vial sets during spaceflight and in the

laboratory at the Kennedy Space Center. The sensitivity of

the temperature recorder was _+0.4°C. The recordings indi-

cated that the control cells experienced temperatures ranging

between 37.3 and 37.6°C for the 9-day experiment while the

flight cells experienced temperatures between 38.4 and 38.8°C

for the same period. Further analysis indicated that the

average temperature difference was 1.2°C between flight and

ground. The entire flight experiment was therefore repeated

Fig. 4. Examples of GH cells stained immu-
nocytochemically {A, C, and E) and their
digitized color images (B, D, and F) used to
quantitate their cytoplasmic areas occupied
by GH. Examples of GH cells in mixed (A
and B}, band 1 tC and D), and band 2
(E and F) cells are shown. Magnification,
×1,500.

E F
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Fig. 5. Release (extracellular) and content (intra-
cellular) ofimmunoreactive GH (iGH) from mixed 3=
(top), band 1 (middle), and band 2 (bottom) cell CD
samples without hydrocortisone during and after
microgravity. Data are means _+ SE expressed o
relative to number of GH cells seeded into vials;
n = 3 vials. Error bars not shown fit within

symbol. *P < 0.05.
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6 mo later in the laboratory at The Pennsylvania State

University where cells in the closed vials were kept at either

39 (to mimic flight temperatures) or 37°C for 9 days. A

statistical comparison of the data between these two experi-

ments with a logarithmic transformation methodology fur-
ther showed that the changes in the flight experiment could

not be explained on the basis of a temperature differential.
We have therefore chosen to present only the synchronous

ground control data in this report.
Experimental constraints within this spaceflight investiga-

tion resulted in low n sizes. Accordingly, multiple s-level-

corrected independent t-tests were used to analyze these

data. This, in turn, permitted use of an inferential technique

to highlight differences as well as strong trends. Significance
was maintained at P <- 0.05.

RESULTS

GH Cell Morphology

The viability of all cell samples both before and after

flight was >90c_ :. At the end of the experiment, the pH

of the culture medium was 7.4. Microscopy showed that

all cells had remained attached to the bottom of each

vial. The general morphology of the cells after space-

flight, while still attached, was unremarkable and

similar to the cultured ground control samples; steroid

treatment had no obvious effect on cell morphology.

Flow cytometric histograms of GH-specific log peak

green fluorescence vs. FALS signals show that several

changes had occurred between the time of initial cell

preparation and recovery from the vials after the

10-day culture. These included 1) broader FALS pat-

terns in unstained cells (mixed and band 1 samples)

after culture than before culture, 2) decreased FALS

signals of unstained cells in band 2 during the ground

and flight cell culture periods, and 3) maintenance of

the FALS pattern of GH cells in the band 2 sample

during the entire experiment but 4) a lack of mainte-

nance of the FALS pattern of GH cells in the mixed and

band 1 samples over the 10-day period (Fig. 3). Table 1

shows data derived from these histograms that com-

pare the effects of flight on 1 ) the GH cell frequency, 2)

the mean FALS-to-PLS peak channel of the total and

GH cell populations, and 3 ) the marker index of the GH
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cells. Because PLS signals are on a logarithmic scale
(not shown in Fig. 3), the lower mean channel values of
all flight cells are considered significant. On the other
hand, differences in the FALS and marker index were
small (linear scale); we conclude that neither the
fluorescence intensity of GH staining nor the size of the
pituitary cells was affected by spaceflight. Determina-
tion of GH cell frequency by manual counting (not
shown) was consistent with the data in Table 1. We
attribute the changes in GH cell FALS patterns after
the experiment to the cell culture procedure per se;
supporting evidence for this idea can be found in Ref.
15. However, we have no explanation why band 2 cells
maintain discrete FALS patterns when they are in
isolation but not when they are present as a part of the
mixed sample.

Image analysis of individual GH cells from both
mixed and band 2 groups after flight indicated that,
relative to their ground control samples, there were
statistically significant increases in their cytoplasmic

areas that contained hormone. This was not true in

band I cells. GH percent area occupancies measured on
200 cells/sample were 40 _+ 3% for ground vs. 53 +_ 2%
for flight mixed samples (P < 0.001), 39 -+ 3c_ , for
ground vs. 37 -+ 2% for flight band 1 samples (not
significant), and 27 + 2% for ground vs. 40 _+ 2c_ , for
flight band 2 samples (P < 0.001). Examples ofimmuno-
cytochemically stained GH cells and their digitized
images used to collect these data are shown in Fig. 4.

Extracellular and Intracellular GH

During and After Flight

iGH +- HC. Relative to ground control samples,
microgravity had no effect on the release of iGH during
the 8 days in space nor during the subsequent 6-day
postflight culture period. Immediately on landing, the
intracellular contents of iGH were significantly lower
than in the ground control samples; however, this
difference was not maintained after the postflight
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Fig.7.ReleaseandcontentofbioactiveGH(bGH)
frommixed(top),band 1 (middle), and band 2
(bottom) cell samples without hydrocortisone dur-
ing and after microgravity. Data are means ± SE
expressed relative to number of GH cells seeded
into vials; n = 3 vials. Error bars not shown fit
within symbol. _*P < 0.01. ***P < 0.001.
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culture (Fig. 5). The addition of HC to the culture
medium marginally increased iGH release from the
mixed ground cell sample and caused a twofold in-
crease in the intracellular iGH in band 2 cells of both

ground and flight groups; the relative difference in
intracellular iGH between these groups measured in
the absence of HC (Fig. 5) tended to continue in the
presence of HC (mixed, P < 0.055; band 2, P < 0.057;
Fig. 6).

bGH +_ HC. Relative to the ground control samples,
major changes in the release of bGH, especially in

HC-containing media, were found (cf. Figs. 7 vs. 8). In
Earth's gravity, more bGH was released from band 2
cells than its flight counterpart; addition of HC re-
versed the effect. In space, the opposite was true; i.e.,
HC stimulated bGH release from band 2 cells back to
the levels of non-HC-treated earthbound band 2 cells.

This response continued into the postflight period.
Band 1 cells from both ground and flight samples

released considerably more (two to three times) bGH in

the presence of HC than in its absence; this was not
true for GH cells in the band 2 samples. Effects of
microgravity on intracellular GH were complex• In
general, flight cells cultured without HC often con-
tained significantly less bGH, but all cell groups cul-
tured in the presence of HC in microgravity consis-
tently contained significantly less bGH.

HPLC analysis of extracellular iGH. Culture media
taken from cells after 8 days in microgravity were
found to contain iGH molecules of widely different
apparent molecular weights. In general, neither micro-
gravity nor steroid had any marked effect on the size
distribution profile of the hormone (Fig. 9). The most
important change was the tendency for flight samples
to contain more GH of higher apparent molecular
weight. To make statistical comparisons between the
amounts of iGH contained in different molecular-

weight regions of these chromatograms as a function of
gravity level, cell sample, and steroid, we compared the
sums of iGH contained in three different molecular-
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weight regions (high, 9.9 x 105 to 2.4 x 105; medium,
2.4 x 105 to 5.9 x 104; low, 5.9 x 104 to 1 x 104). The
only statistically significant effect (P -< 0.05) was the
reduced amount of iGH recovered from the low-

molecular-weight regions of the mixed HC-treated cell
flight samples (Fig. 9D). Strong tendencies toward
differences between flight and ground were noted in the
following samples: 1 ) mixed, without HC, high molecu-
lar weight: flight > ground (P < 0.08); 2) band 1, with
HC, high molecular weight: flight > ground (P <
0.07); and 3) band 2, without HC, medium molecular
weight: flight > ground (P < 0.10). In general, the total
amounts of iGH recovered after HPLC from flight and
ground samples were within 10% of each other. Rela-
tive to separated cells, a greater fraction ofiGH was of
higher apparent molecular weight when the total cell
population was used. The reason for this difference is
not known.

Response to GHRH. After 8 days in low gravity, cell
responses (iGH release) to 10 9 M GHRH challenge

were only moderate to nonexistent, whereas the re-
sponses of ground-based mixed and band 1 cells were
significant (Fig. 10). The lower sensitivity of the GH
bioassay required combining five 15-min fractions (in-
cluding the GHRH pulse) before assay. These results
also showed 1) nonresponsiveness of mixed cells after
flight (Fig. 11), 2) apparent increased sensitivity of
band 1 cells to GHRH (Fig. 12), and 3) weak to
nonexistent responses of band 2 cells (Fig. 13).

Substrate. Three vials pretreated with Matrigel (a
commercially available mixture of basement mem-
brane macromolecules) and then loaded with mixed

cells were also exposed to low gravity. This treatment
had no effect on the release of either iGH or bGH from

cells regardless of treatment group, i.e., flight, ground,
and postflight (data not shown). Band 1 and 2 cells
were not tested.

Cell location. Flight had no effect on the release of

iGH from mixed cells prepared from either dorsal or
ventral regions of the pituitary gland [dorsal, 367 _+ 22
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(flight) and 347 _+ 14 ng/1,000 GH cells (ground);
ventral, 150 _ 7 (flight) and 169 _+ 7 ng/1,000 GH cells
(ground)]. However, release of bGH from ventral flight
cells was reduced by one-half [dorsal, 116 _+ 4 (flight)
and 108 +_ 15 ng/1,000 GH cells (ground); ventral,
240 _+ 10 (flight) and 545 _ 19 ng/1,000 GH cells
(ground); P < 0.001].

Intracellular GH variants. Western blots of cell ex-

tracts after separation by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis under nonreducing
conditions revealed a complex array of iGH forms that
were qualitatively similar between flight and ground
samples (Fig. 14A). Analysis of these various cell
samples by densitometry showed that although differ-
ences between flight and ground did not vary within
any given region by >10%, the pattern of changes
depended on both the sample and presence of HC. For
example, flight tended to increase amounts of higher
molecular-weight iGH forms in band 1 cells at the
expense of lower molecular-weight forms and HC accen-

tuated that difference (Fig. 14C). However, a similar
analysis of iGH from band 2 flight cells give very
different profiles; in this case, HC reversed this pattern
(Fig. 14D). Not surprisingly, the mixed cell sample gave

a pattern that was different (Fig. 14B). Comparison of
the molecular-weight data, i.e., patterns of iGH vari-
ants contained inside cells (Fig. 14) vs. those released
from cells (Fig. 9), show an obvious correlation between
the two data sets. Heterogeneity of molecular forms of
GH are known to result from mRNA splicing, posttrans-
lational modifications (e.g., aggregation or glycosyla-
tion), and proteolytic cleavage.

DISCUSSION

The primary objective of this cell culture experiment
was to find out whether the postflight changes in

pituitary GH cells prepared from rats after 7-14 days
in space also happened when GH cells themselves were
put into space. Within the constraints of the hardware
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and safety issues imposed by NASA, this objective was
largely achieved. Hymer et al. (16) previously reported
that certain structural and functional changes in GH
cells consistently occurred in spaceflown animals; the
present report shows that similar changes also take
place in spaceflown GH cells. These include 1 ) changes
in the release of bGH and iGH, 2) changes in the
intracellular GH content, and 3) increases in the
cytoplasmic area occupied by GH. In addition, this cell
culture experiment provides new information regard-
ing microgravity-induced changes in 1 ) responsiveness
of GH cells to adrenal and hypothalamic hormones, 2)
paracrine interactions between different hormone-
producing cell types, and 3) changes in the apparent
mass of some iGH molecules released into the culture

medium during flight. A convenient way to summarize
the many statistically significant effects in both intra-
cellular and released GH during and after spaceflight,
considered within the context of hormone assay, cell
type, and culture medium, is given in Fig. 15. This

representation, taken together with other results pre-
sented in this paper, enable us to obtain "bottom-line"
answers to the questions posed in Table 2.

Our previous spaceflight experiment (16) showed the
importance of measuring GH by bioassay in addition to
immunoassay. Both assays are specific, but they obvi-
ously have different end points. The polyclonal antise-
rum we use is directed against 22,000 GH. The bioassay

is specific; it measures activity of the GH molecule, i.e.,
its ability to stimulate the growth of long bones of the
hypophysectomized female rat (10). Which and how
many of the multiple GH variants contained in (and
released from) GH cells have activity in this assay is
still not fully understood (23). GH molecules released
postflight from cells of spaceflown rats consistently
show a -50% suppression in biological activity relative
to ground control samples, whereas results by immuno-
assay tend to be highly variable (16).

The interacting variables of cell type and steroid in

the medium clearly dictate the results in terms of GH
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Fig. 11. Cumulative release of iGH (A
and C) and bGH (B and D) from mixed

ground (A and B) and flight (C and D)

pituitary cells during GHRH testing.
Pulse 1, sum of hormone contained in

fractions 5-9. Pulse 2, sum of hormone

contained in fractions 10-14, Amounts

of iGH released per fraction are shown

in Fig, 10; lower sensitivity ofGH bioas-

say required pooling of fractions as
indicated, Values are means ÷ SE.

*P < 0.05. **P < 0,01.
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activity. For example, mixed cells release about the
same amount of bGH (300-400 ng/1,000 GH cells)
regardless of culture medium and gravity level. How-
ever, release of bGH from band 1 cells is two- to
threefold higher than from mixed cells in steroid-
containing medium; in this GH cell subpopulation,
microgravity also appears to play a minor role. On the
other hand, the responses of the dense band 2 GH cells
to the variables of gravity and steroid are more interest-

ing. For example, HC suppresses the release of bGH
from earthbound dense GH cells during the entire 2-wk
culture period, whereas microgravity exposure totally
reverses this response. These data not only show that
dense GH cells are sensitive to microgravity but also
show that their response can be modified by hormones
in vitro.

Why should dense GH cells, both in the presence and
absence of steroid, show such a different behavior in

Fig. 12. Cumulative release of iGH (A
and C) and bGH (B and D) from band 1

ground (A and B) and flight {C and D)

pituitary cells during GHRH testing.

Pulse 1, sum of hormone contained in

fractions 5-9. Pulse 2, sum of hormone

contained in fractions 10-14. Amounts

of iGH released per fraction are shown

in Fig. 10; lower sensitivity ofGH bioas-

say required pooling of fractions as
indicated. Values are means _+ SE.

*P < 0.05. **P < 0.01.
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microgravity? We know that spaceflown GH cells expe-
rience an important biophysical change in their cyto-
plasms, viz., a significantly increased (-15%) area
occupied by hormone. This change also happens when
cells are prepared from spaceflown rats [two separate
flight experiments (16)]. We speculate that secretory
granule-microtubule associations and cytoplasmic
and/or nuclear steroid receptors in dense GH cells could
account for their different behavior. Specifically, all
secretory granules are associated with the cytoskeleton
via microtubules (27), and the cytoskeleton is often
considered to be a primary gravity-sensing structure
(19). On Earth, GH cells respond to glucocorticoids via
nuclear receptors after the steroid reaches this site via
a cytoplasmic-receptor shuttle mechanism believed to
involve hormone-heat shock protein complexes (21). We
envisage dynamic biophysical-biochemical interactions
involving steroid receptors, heat shock proteins, and
cytoskeletal-associated elements that would enable the
cell to respond to changes in its environment. Thus
dense GH cells, "unloaded" in microgravity, might
respond to environmental change in a biochemical
sense (conformation of the GH molecule) accomplished
by way of I ) redistribution of secretory granules and 2)
altered activity of molecular chaperones that ulti-
mately result in reduced biological activity of the
hormone-secreted molecule. Biophysical changes of the
type we envision have been seen in many cells after
heat stress (32) and shear stress (3). Because HC
exposure stimulated bGH release from band 2 cells in
microgravity (Fig. 8), we predict that GH cytoplasmic
area occupancy in dense GH cells would be restored
(i.e., decreased) to ground control levels in the presence
of steroid. Unfortunately, we did not have sufficient
band 2 cells to test this idea.

The reason(s) why less dense GH cells (band 1)
releases large amounts ofbGH in response to steroid is
unknown. Clearly, microgravity appears to play a far
less important role in the dynamics of this response.
Equally certain, the mechanism(s) by which steroid
affects bGH release in band 1 cells in space must be
different from that in band 2 cells because bGH is

significantly suppressed in the former case but signifi-
cantly elevated in the latter case (Fig. 15).

One striking difference between the results obtained
by using immunoassay vs. bioassay was that of the
difference in relative amounts of GH released in micro-

gravity from the mixed vs. separated cells. Thus iGH
levels were approximately two times greater from the
mixed than from the separated cells (200-250 vs.
50-100 ng iGH/1,000 GH cells; Figs. 5 and 6), and
steroid made no difference in this pattern. On the other
hand, release of bGH from separated GH cell subpopu-

lations was two to six times greater than from the
mixed cells (Figs. 7 and 8). It may be that these
different results are attributable either to the assay
itself, paracrine interactions, or some combination of
the two. The polyclonal antiserum we used probably
detects many epitopes on the GH molecule, but only a
certain percentage of these may actually achieve the
proper conformation to confer a biological response in
the assay animal. Paracrine interactions between differ-
ent hormone-producing cell types in the anterior pitu-
itary are known but are difficult to demonstrate conclu-
sively. Although the tibial-line bioassay is known to be
specific for GH, it is conceivable that another hormone
in the assay sample could interact in the assay animal
to give the bone growth response observed. Equally
possible, a molecule(s) from dense cells might repress
the function of less dense cells (or vice versa) when they
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are in combination with more dense cells; derepression
would then occur when the cells were used as a

subpopulation. This latter hypothesis could be tested
by adding spent culture medium from one subpopula-
tion of cells to the other.

The rationale for testing cells of two different densi-
ties is based on our early data base that shows that
there are reproducible differences in the densities and
activities of GH cells in the pituitaries of young adult
male rats. Approximately one-half of all GH cells have
densities > 1.070 g/cm3; because a majority of the other
hormone-producing cell types have densities < 1.070

g/cm 3, the percentage of cells in band 2 is obviously
higher. Technical constraints did not permit us to
further purify GH cells in band 2, but this can be
accomplished to >90% by using combinations of den-
sity gradients designed to separate cells on the basis of
differences in either size, density, or laser light scatter
(8). Functional and biochemical differences in GH
molecules released from band 2 cells in vitro include 1 )

greater amounts of disulfide-linked oligomeric forms
(9) and 2) greater biological activity [based on the
ability to promote long bone growth of the hypophysec-
tomized rat (13, 20)]. Implantation of band 2 cells, but
not band I cells, into the cerebral ventricles ofhypophy-
sectomized rats results in increased body weight, muscle

weight, and long bone growth of the recipient. Other
data also indicate that GH cells in these two density

ranges respond differently to 1 pM HC (29) and 10 9 M
GHRH (13).

HPLC separations of different molecular GH size
classes were done to see whether our flight results
could be explained at the molecular level. The data in
Fig. 9 only go so far in helping to understand possible
mechanism(s) at play. Several different molecular-
weight variants of GH are known to be present in
mammalian pituitary tissue, mammalian sera, and cell
culture media (9, 23). Gel size exclusion chromatogra-
phy is commonly used to display molecular heterogene-
ity and reports of "big-big," "big," and "normal" (mono-
meric, 22,000) GH abound (2). Interpretations of the
physiological significance of these different high-
molecular-weight forms range from the association of
hormone monomers with carrier proteins to oligomeriza-
tion and other posttranslational modifications. There is
some agreement that high-molecular-weight iGH has
less activity than does 22,000 iGH in immunoassays
and selected bioassays (2); however, evidence that GH
forms > 22,000 have considerable activity in the rat
tibial-line bioassay is equally compelling t7). Our re-
sults suggest that the statistically significant decrease
in release of iGH from mixed HC-exposed cells in
microgravity (Fig. 6) can be attributed to a significant
reduction in GH molecules of monomer-dimer size. The

design of future spaceflight experiments with pituitary
cell cultures to study the effects on monomer-dimer GH
level could focus on variables of paracrine interactions
between cells +_ HC because these affect the GH

system.
The mechanisms by which two hypothalamic peptide

hormones, GHRH and somatostatin, regulate the re-
lease of GH from GH-producing cells via membrane
receptors is well understood. In hypothalamic neurons
of spaceflown rats, the mRNA and intracellular con-
tents of both GHRH and somatostatin, two peptide
regulators of GH cell function, are significantly sup-
pressed (26). These same investigators have also re-

ported that the effects were not seen in cells producing
other neuroendocrine peptides, a result that implies
that the entire hypothalamic-pituitary GH control axis
may be particularly sensitive to microgravity. To our
knowledge, this report represents the first time that
the responsiveness of spaceflown pituitary cells to
GHRH challenge has been studied. The results of our
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testing establish altered responsiveness of GH cells in

all three cell samples (mixed, band 1, and band 2) to

GHRH challenge after flight but shed no light on the

mechanism(s) that accounts for these changes. Obvi-

ously, they could reflect changes anywhere along the

signal transduction pathway. Responses of freshly dis-

persed GH cells to 10 9 M GHRH are usually robust;

those seen in this study, although significant, are less

so. We attribute this attenuated response to 1) the

relatively long time in culture (-9 days) before testing

and 2) the relatively crude culture system used. Be-

cause experimental logistics required cell processing as

soon after landing as possible, the most expeditious

way to conduct GHRH testing was in the spaceflown

Table 2. STS-46 pituitary cell culture experiment:

questions and answers

Question Answer

Does microgravity affect basal release ofiGH
during or after flight? No

Does HC modify basal release ofiGH during or
after flight? Usually not

Is intracellular iGH affected during or after
flight? Yes

Does HC modify that response? Yes
Does microgravity affect basal release ofbGH

during or after flight? Yes
Does HC modify basal release ofbGH during or

after flight? Yes
Is intracellular bGH affected during or after

flight? Yes
Does HC modify that response? Yes
In general, do flight-associated changes in intra-

cellular and/or released GH (both iGH and

bGH) recover after 6 days postflight? Sometimes
Do GH cells response to GHRH postflight? Usually not
Does microgravity affect the amount and

apparent molecular weight of extracellular
and intracellular iGH; does HC affect these
variables? Sometimes

Do paracrine interactions affect GH cell function
during or after flight? Yes

Does HC modify those interactions? Yes
Does microgravity affect biophysical changes in

the GH celt? Yes

iGH, immunoreactive GH; HC, hydrocortisone; bGH. biologically
active GH; GHRH, GH-releasing hormone.

cell-containing vials themselves. Finally, it was not

possible to include GHRH in the culture medium

during flight because this peptide is not stable for long

periods.

The excellent morphological study by Thapar et al.

(30) evaluated the rat adenohypophysis after a 7-day

spaceflight by using histology, immunohistochemistry,

morphometry, electron microscopy, and in situ hybridi-

zation techniques. The major effects of spaceflight were

found on the morphology of adrenocorticotropic hor-

mone cells but not on the GH or PRL cells. Our past

studies (16), as well as the present effort (Table 1),

indicate that GH or PRL cell numbers are not affected

by microgravity; in this respect, we are in agreement

with the observations of Thapar et. al (30). However,

our two studies are not in complete agreement with

respect to the issue of GH or PRL "immunopositivity"

after spaceflight. We find that GH-specific immunofluo-

rescence (measured by the marker index) is two times

greater in cells from spaceflown animals (16) but not in

spaceflown cells themselves (Table 1). In an earlier

study, which validated the flow cytometry procedures

used to obtain quantitative immunohistochemical data,

Hatfield and Hymer (15) pointed out that fluorescence

intensity does not necessarily reflect hormone content.

Indeed, Grindeland et al. (13) and Hymer et al. (16)

have speculated that the unloading of spaceflight might

result in conformational changes in the packaging of

GH molecules that might lead to exposure of greater

numbers of epitopes and therefore generate increased

GH fluorescence intensity. There is a growing aware-

ness that minor posttranslational modifications of hor-

mone molecules immediately before exocytosis may

dramatically affect hormone activity (31); such changes,

as correctly pointed out by Thapar et al. (30), might

very well escape detection morphologically. Why we

failed to find an increased marker index in spaceflown

cells (Table 1) and why Thapar et al. failed to find

qualitative differences in the staining of GH cells when

we had previously observed increased marker indexes

of GH cells from spaceflown rats are unknown.

There are two schools of thought as to the mecha-

nisms cells may use to detect changes in gravity levels.
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One invokes cytoplasmic organelles (e.g., cytoskeletal
elements) as candidates for direct gravisensing; the

other invokes physiochemical changes in the extracellu-
lar medium (e.g., decreased diffusion or microconvec-
tion) as the primary sensor (1, 22). In the latter case, a
myriad of secondary intracellular changes, classified as
biochemical, biophysical, or physiological in character,
would ultimately explain microgravity-related changes
in cell structure and function that are scattered through-
out the literature. Our experiments do not define
mechanisms of gravisensing by rat pituitary GH cells,

but they do show that it will be possible to modify their
responses to microgravity in future experiments by
changing the chemistry and cellular makeup of the
culture system.
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